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Nonlinear Least Squares and Regularization

James G. Berryman

ABSTRACT

I present and discuss some general ideas about iterative nonlinear output least-squares
methods. The main result is that, if it is possible to do forward modeling on a physical problem
in a way that permits the output (i.e., the predicted values of some physical parameter that
could be measured) and the �rst derivative of the same output with respect to the model
parameters (whatever they may be) to be calculated numerically, then it is possible (at least
in principle) to solve the inverse problem using the method described. The main trick learned
in this analysis comes from the realization that the steps in the model updates may have to be
quite small in some cases for the implied guarantees of convergence to be realized.





INTRODUCTION

A problem frequently encountered in the earth sciences, and in other physical and biomedical
sciences as well, requires deducing physical parameters of the system of interest from measure-
ments of some other (hopefully) closely related physical quantity. The obvious example in
seismology (either surface re
ection seismology or crosswell seismic tomography) is the use of
measurements of sound wave traveltime to deduce wavespeed distribution in the earth and then
subsequently to infer the values of other physical quantities of interest such as porosity, water
or oil saturation, permeability, etc.

Many of the problems of interest can be formulated in a way such that the measured
quantities (often called the \output" for reasons that will become clear in a moment) may be
compared to predicted values of those same quantities and the resulting observed discrepancies
then used to make \improvements" in the system model parameters of real interest. Predicted
values are obtained by forwardmodeling based on some assumed model of the physical quantities
of interest, and these predicted values are clearly the \output" of such a forward modeling
code. Comparisons between predicted output and measured output parameters may be done
in a variety of ways, but a common method is the output least-squares method: discrepancies
are squared and summed, and some numerical procedure is established to reduce the overall
least-squares error in the output quantity.

The trick in all this is to �nd a method that actually does guarantee convergence of the
output least-squares functional to zero, or at least to a small number whose size is comparable
to that expected from the sums of squares of the measurement errors. The purpose of this paper
is to show that such a procedure can essentially always be constructed as long as one additional
condition is present: If the nonlinear functional of the model parameters used to compute the
outputs can be di�erentiated once with the respect to each of the model parameters of interest
(whether this derivative is taken analytically or numerically does not appear to be important),
then an evolution equation can be found that will essentially guarantee that a sequence of
models gradually improving the agreement between the measured data and the predicted data
can be found in a systematic way. The only caveat is that the step size of the improvement
from one iteration to the next will be problem dependent and may be rather small in some
applications of interest.

NONLINEAR OUTPUT LEAST-SQUARES METHOD

In an abstract setting, let fdig for i = 1; : : : ; m be a set of m measurements. This data may
be organized into a data m-vector d. Let s be an n-vector containing the n parameters for the
model/solution space to be constructed. Then, let Ni(s) be a (possibly nonlinear) function of
the model parameter vector s such that Ni(s) = di in in�nite precision forward modeling of the
physical problem of interest. If the data di and the functions Ni are known, then the inversion
problem is to �nd an approximate s that satis�es the data (i. e., has as small a data mis�t as
possible) in some sense.

If life were simple, the operators Ni would be analytically invertible, so one might think it
could be possible to write the solution to the inverse problem as s = N�1

i (di). However, the
result is certainly a strange looking formula: While it is perfectly sensible that the domain of
each function Ni is a set of n model parameters, and that the range is a single datum, the
postulated inverse function with multiple model outputs from single datum inputs is clearly
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not sensible. In most cases, there will simply not be su�cient information contained in a single
datum to determine multiple model parameters.

For strictly linear problems, there might exist an appropriate operator X acting on the
full data m-vector such that X(d) = s produces the model n-vector. However, even for linear
problems, the existence of such an operator is not necessarily guaranteed since the sizes m and n
of the two vector spaces will generally di�er. This di�cult situation leads to the introduction of
pseudoinverses in linear problems or to the methods to be described now in nonlinear problems.

So, instead of using some hypothetical analytical approach, the desired solution to the
inverse problem will make simultaneous use of all (or at least most) of the data while determining
some sort of optimal �t to a chosen set of model parameters. This situation is common in data
analysis and often leads to formulation of least-squares methods for this type of inversion
problem.

An approach to this problem based on nonlinear least-squares inversion considers the non-
linear function

F (s) =
mX
i=1

[di �Ni(s)]
2; (1)

which is simply the sum of the squares of the data residuals ri = di � Ni. I formulate an
\evolution" equation for the model vector s = s(�), where � is an evolution parameter {
treated as a continuous generalization of an iteration number. In particular, I must ultimately
discretize this parameter in my �nal numerical method, in which case the particular values of
� = 0; 1; 2; : : :will be exactly the iteration numbers. But for purposes of explaining the method,
it will prove useful to treat � initially as a continuous parameter.

The thrust of the nonlinear least-squares method is to produce a model s that minimizes
the least-squares error function F (s). One way to guarantee [see, for example, Je�rey and
Rosner (1986) and Lu and Berryman (1991)] that a local minimum is achieved is to pose the
evolution equation for s(�) in a way that guarantees the value of F (s) decreases monotonically
as � increases (or at each iteration step for the discretized problem). Taking the derivative of
F (s) with respect to the evolution parameter, the chain rule gives

@F (s)

@�
= �2

nX
j=1

mX
i=1

[di �Ni(s)]
@Ni

@sj

@sj

@�
: (2)

It is desired that the evolution equation for s be chosen to guarantee that (2) is � 0. It is
easy to see that (2) will always be negative or zero if the evolution equations for the model
parameters sj are chosen to be

@sj

@�
= 
(�)

mX
i=1

[di �Ni(s)]
@Ni

@sj
; (3)

where 
(�) is a positive parameter to be determined. Then,

@F (s)

@�
= �2
(�)

nX
j=1

"
mX
i=1

[di �Ni(s)]
@Ni

@sj

#2
; (4)
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so each term in the sum over j in (4) is a square quantity and must be positive or vanish identi-
cally. The choice (3) of evolution then clearly guarantees the desired monotonically decreasing
behavior of the total squared error functional as � !1.

To implement this procedure, a choice of discretization must be made together with a choice
for 
(�). The obvious choice of discretization for the evolution equation (3) is

sj(k + 1)� sj(k) � �sj = 
(�)[di�Ni(s(k))]
@Ni(s)

@sj
j
s=s(k); (5)

where I have taken the �nite step size for the evolution to be �� = 1. In the continuous evolution
problem, the in�nitesimal changes in the evolution parameter guarantee similarly in�nitesimal
changes in the model vector s(�) and therefore this makes the choice of 
(�) largely arbitrary.
In contrast, for the discretized problem, the evolution of s is �nite at each step and care must
be taken not to violate the desired condition that the least-squares functional should decrease
at each step. Such violations may occur if the step size is taken too large.

Reconsidering (1), I �nd that, by keeping only those terms proportional to the �rst and
second powers of the components of �s, I have

F (s(k + 1)) =
mX
i=1

[di �Ni(s(k) + �s)]2 '
mX
i=1

[di �Ni(s(k))]
2

�2
nX

j=1

mX
i=1

[di �Ni(s)]
@Ni

@sj
�sj +

mX
i=1

2
4 nX
j=1

@Ni

@sj
�sj

3
5
2

: (6)

After substituting (5), the parameter 
(�) can now be chosen so that the right-hand side of
(6) decreases as much as possible at each step of the iteration scheme. The optimum choice is
easily shown to be


(k+ 1) =Pn
j=1

hPm
i=1[di �Ni(s(k))]

@Ni

@sj

i2
P

j;j0

hPm
i0=1[di0 �Ni0(s(k))]

@Ni0

@sj

Pm
i=1

@Ni

@sj

@Ni

@sj0

Pm
i00=1[di00 �Ni00(s(k))]

@Ni00

@sj0

i ; (7)

since this minimizes the right-hand side of (6).
It will prove enlightening to compare the procedure just presented with the well-known

method of conjugate gradients (Hestenes and Stiefel, 1952; Fomel, 1996) for a linear operator
such that Ni(s) = (Ls)i. Then, model updates are obtained using

s(k+1) = s(k) + 
(k+1)u(k+1); (8)

where, for the discrete iterative problem, I put the iteration numbers in superscripts. The
new vector u(k+1) is the (somehow) known update direction in the model space and 
(k+1) is a
parameter used to optimize the step size. The updated residual vector is again given by

r(k+1) = d � Ls(k+1) = r(k) � 
(k+1)Lu(k+1): (9)

The magnitude of the residual vector is easily shown to decrease most at each step of the
iteration sequence if the optimization parameter satis�es


(k+1) =
(r(k);Lu(k+1))

jjLu(k+1)jj2
: (10)
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Equation (10) is exactly analogous to the formula (7) obtained in the nonlinear least-squares
problem if the components of the residual are given by

r
(k)
i = di �Ni(s

(k)); (11)

the matrix elements of the linear operator are

(L)ij = Lij =
@Ni

@sj
j
s=s

(k) ; (12)

and the update direction vector satis�es


(k+1)u(k+1) =
@s

@�
; (13)

where the components of the right-hand side of (13) are given by (3) evaluated at s(k). With
this identi�cation, it becomes clear that the nonlinear least-squares method outlined above is
one natural generalization of the well-known conjugate gradients technique.

REGULARIZATION

Now it may happen, due to a combination of poor conditioning of the linear operator L and
unfortunate choices of starting guess of the model vector s, that the denominator of the right-
hand side of (10) may be very small or vanish to numerical accuracy. Similar circumstances
can arise in the nonlinear least-squares problem in cases of sparse or irregularly sampled data.
When such circumstances arise in practice, it may be necessary to regularize the method by
adding an additional constraint equation to the least-squares functional (1). Regularization
is a well-known technique often associated with the names of Tikhonov and Ars�enine (1976),
Levenberg (1944), and Marquardt (1963, 1970), among others.

The regularization constraint usually takes the form of a quadratic functional of the model
vector. One typical choice is �(s � �s)T (s � �s) where � (often called the damping parameter)
is some small positive constant and �s is some value of the model vector that the �nal solution
should not deviate from too much. Other typical choices of regularization constraint are based
on di�erentials of the model taking the form (Ds)T (Ds), where Ds might be either a simple
gradient or a Laplacian of the model { assuming that s is some simple physical quantity. If s
is a more complicated vector of model parameters which is not easily given a simple physical
interpretation, then some other choice of regularization constraint might be needed.

It is preferable to avoid using regularization if possible, because such techniques tend to
modify the entire spectrum of the operator to be inverted and therefore tend to degrade reso-
lution.

For the linear least-squares problem, I can carry the analysis further to understand how the
iteraton scheme modi�es the model estimate at each step. Assuming that the linear operator L
is a matrix of dimensions m�n, where m and n are usually not equal, it is helpful to use L and
its transpose LT to form a square, symmetric matrix and the associated eigenvalue problem�

0 L

LT 0

��
 q
�q

�
= �q

�
 q
�q

�
: (14)
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Assuming that the m-vectors  q and the n-vectors �q are normalized to unity, the singular
value decomposition of the matrix L may now be written in terms of these eigenfunctions as

L =
rX

q=1

 q�q�
T
q : (15)

The sum is taken over r terms, where r is the rank of L.
Now, each model estimate s(k) may be expanded in terms of the appropriate eigenfunctions

according to

s(k) =
rX

q=1

�(k)q �q; (16)

where the �
(k)
q s are the expansion coe�cients for the kth iteration. Similarly, the data vector

may also be expanded as

d =
rX

q=1

�q q; (17)

where the �qs are constant coe�cients. Both the model vector and the data vector expansion
might in addition include a term from the null space of L, but for simplicity I will ignore this
possibility for the present purposes.

With these de�nitions of the various coe�cients, I �nd that equation (10) becomes


(k+1) =

Pr
q=1 �

2
q(�q � �q�

(k)
q )2Pr

q=1 �
4
q(�q � �q�

(k)
q )2

; (18)

and the update equation for the �qs becomes

�(k+1)q = �(k)q + 
(k+1)�q(�q � �q�
(k)
q ): (19)

It follows from (19) that the iteration process has converged when

�(k)q =
�q

�q
: (20)

As the coe�cients approach convergence, I discover that the denominator of (18) can become
quite small. If I assume that the eigenvectors with the largest eigenvalues converge most quickly,
then after some number of iterations the main contributions to the denominator will be from
the terms associated with the smallest eigenvalues, and these contributions are proportional to
the fourth power of these small eigenvalues. If this happens, some type of regularization may
be required to obtain useful results.

Consider the simplest type of regularization involving a model vector constraint so that the
modi�ed objective function becomes:

F�(s) =
mX
i=1

[di �Ni(s)]
2+ �

nX
j=1

(sj � �sj)
2: (21)
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The expansion of the constraint vector is given by

�s =
rX

q=1

��q�q : (22)

The equation for the modi�ed model update is then given by

�(k+1)q = �(k)q + 
(k+1)
h
�q�q + ���q � (�2q + �)�(k)q

i
: (23)

Clearly, the modi�ed iteration sequence for �q has converged when

�(k)q =
�q�q + ���q
�2q + �

; (24)

showing that the limiting relation is just a linear combination of the starting value and the
result for pure least-squares as seen in (20). If the damping parameter � is small, these two
values will of course be quite close. But, in general, for any nonzero value of the damping
parameter, it is inevitable that the resolution will su�er due to the fact that the coe�cients
cannot approach their optimum value (20) but are actually constrained away from it by the
regularization procedure. This is why regularization should be avoided, or at least minimized,
as much as possible.

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

The main result obtained in this paper is this: If it is possible to do forward modeling on a
physical problem in a way that permits the output (i.e., the predicted values of some physical
parameter that could be measured) and the �rst derivative of that same output with respect
to model parameters (whatever they may be) to be calculated numerically, then (at least in
principle) it is possible to solve the inverse problem using the method described. The main trick
learned in this analysis comes from the realization that the steps in the model updates may
have to be quite small in some cases for the implied guarantees of convergence to be realized.

We have concentrated on least-squares methods in the presentation in order to keep the
analysis simple. However, it is clear that the general method presented could be applied as well
to any norm of the data discrepancies that possesses the same necessary qualities, the most
important of these being the existence of a �rst derivative with respect to the model parameters.
One interesting example of such an alternative is Huber's hybrid of l1 and l2 [see Clearbout
(1996)]. Other choices include special cases of the more general lp norm that also have a �rst
derivative. These other methods will be discussed in future work.
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